Density functional theory for Baxter's sticky hard spheres in confinement.
نویسندگان
چکیده
It has recently been shown that a free energy for Baxter's sticky hard-sphere fluid is uniquely defined within the framework of fundamental measure theory (FMT) for the inhomogeneous hard-sphere fluid, provided that it obeys scaled-particle theory and the Percus-Yevick (PY) result for the direct correlation function [H. Hansen-Goos and J. S. Wettlaufer, J. Chem. Phys. 134, 014506 (2011)]. Here, combining FMT weighted densities with a new vectorial weighted density, we regularize the divergences of the associated strongly confined limit. The free energy that emerges is exact in the zero-dimensional limit, leaves the underlying equation of state unaffected, and yields a direct correlation function distinct from that of PY. Comparison with simulation data for both the bulk pair-correlation function and the density profiles in confinement shows that the new theory is significantly more accurate than the PY-based results.
منابع مشابه
Density and Polarization Profiles of Dipolar Hard Ellipsoids Confined between Hard Walls: A Density Functional Theory Approach
The density and polarization profiles of the dipolar hard ellipsoids confined between hard walls are studied using the density functional theory (DFT). The Hyper-Netted Chain (HNC) approximation is used to write excess grand potential of the system with respect to the bulk value. The number density is expanded up to zero and first order in polarization to find the results. For the zero order in...
متن کامل"Sticky" hard spheres: equation of state, phase diagram, and metastable gels.
A large variety of engaging phenomena, ranging from crystallization in protein solutions to the formation of colloidal gels and glasses via depletion forces, stems from the occurrence of very short-ranged attractive forces. From depolarized light scattering measurements of equilibrium sedimentation profiles, we obtain an accurate description of the equation of state and of the phase diagram of ...
متن کاملA modified fundamental measure theory for spherical particles in microchannels
Canonical-ensemble Monte Carlo simulation and an improved fundamental-measure theory are applied to calculating the structures and chemical potentials of neutral and associating spherical particles confined in rectangular or corrugated microchannels. It is found that the confinement significantly affects the distributions of neutral spheres in the microchannels, especially at high densities or ...
متن کاملHard, Soft, and Sticky Spheres for Dynamical Studies of Disordered Colloidal Packings
HARD, SOFT, AND STICKY SPHERES FOR DYNAMICAL STUDIES OF DISORDERED COLLOIDAL PACKINGS Matthew Daniel Gratale Arjun G. Yodh This thesis describes experiments which explore the role of interparticle interactions as a means to alter, and control, the properties of dense colloidal packings. The first set of experiments studied phonon modes in two-dimensional colloidal crystals composed of soft micr...
متن کاملA fundamental measure theory for the sticky hard sphere fluid.
We construct a density functional theory (DFT) for the sticky hard sphere (SHS) fluid which, like Rosenfeld's fundamental measure theory (FMT) for the hard sphere fluid [Y. Rosenfeld, Phys. Rev. Lett. 63, 980 (1989)], is based on a set of weighted densities and an exact result from scaled particle theory (SPT). It is demonstrated that the excess free energy density of the inhomogeneous SHS flui...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 108 4 شماره
صفحات -
تاریخ انتشار 2012